Rod-Cutting Problem

Kuan-Yu Chen ([t % %)

2019/04/16 @ TR-310-1, NTUST

Review

« We can categorize that

— Comparison Sorts

« The sorted order they determine is based only on comparisons
between the input elements

» Insertion Sort, Merge Sort, Quick Sort

— Non-comparison Sorts
« Counting Sort, Radix Sort, Bucket Sort

Worst-case Average-case/expected | Best-case
Algorithm running time running time running time
Insertion sort ®(n?) O (n?) 0(n)
Merge sort O(nlgn) Onlgn) O(nlog, n)
Heapsort O(nlgn) Onlgn) 0(n)
Quicksort ®(n?) O(nlgn) (expected) | @(nlog, n)
Counting sort Ok + n) Ok +n) O(k +n)
Radix sort O(d(n + k)) O(d(n + k)) O(d(k + n))
Bucket sort O (n?) ®(n) (average-case) 0(n)

Dynamic Programming

« Dynamic programming, like the divide-and-conquer method,
solves problems by combining the solutions to subproblems

« We typically apply dynamic programming to optimization
problems
— Such problems can have many possible solutions

— Each solution has a value, and we wish to find a solution with
the optimal (minimum or maximum) value

Rod-Cutting Problem.

« Given a rod of length n inches and a table of prices p; for i =
1,2, ...,n, determine the maximum revenue 7;, obtainable by
cutting up the rod and selling the pieces

lengthi |1 2 3 4 5 6 7 8 9 10
pricep; |1 5 8 9 10 17 17 20 24 30

— Consider the case when n = 4
« We can cut up a rod of length n in 271 different ways

o Cutting a 4-inch rod into two 2-inch pieces produces revenue p, +
p, =5+ 5 = 10 is optimal
9 5 5

Q))) 00)) Q)0) 0 J)Ho)

(@) (b) () (d)

el e 0Hood edDAD)

(e ® (€9 (h)

Rod-Cutting Problem..

« Given a rod of length n inches and a table of prices p; for i =
1,2, ...,n, determine the maximum revenue 7;, obtainable by
cutting up the rod and selling the pieces

lengthi |1 2 3 4 5 6 7 8 9 10
pricep; |1 5 8 9 10 17 17 20 24 30

— If an optimal solution cuts the rod into k pieces, 1 < k < n,
then an optimal decomposition is {i{, i5, ..., I} }

_ ; ; = 1 fromsolution]l =1 (no cuts),
n=1 L ces L r
1 T 2 T T k r, = 5 from solution 2 =2 (no cuts) ,
r; = 8 from solution 3 =3 (no cuts) ,
. . ry = 10 from solution4 =2+ 2,
o The maximum revenue is rs = 13 from solution 5 =2 + 3.
re¢ = 17 from solution 6 = 6 (no cuts) ,
Y = pi, +pi, + -+ Dp; r; = 18 fromsolution7=1+6 or 7=2+2+3,
1 2 k rg = 22 from solution 8 =2 + 6,
) ro = 25 from solution 9 =3+ 6,
e A gel’leral form is rio = 30 from solution 10 = 10 (no cuts) .

Tp = Max(pp, 7y + 11,72 + Thep, ", Tho1 +11)

\ maximum revenue

Rod-Cutting Problem...

— For a given rod of length n inches, the general form of
maximuim revenue is

Tn = Max(Pn, 1, + 11,7y + Ty, "+, Th—1 +17)

CuT-ROD(p, n)

— A simpler equation is P

1
Ty = Max (p; + ;)] g e’
4 fori = 1ton
5 g = max(q, p[i] + CuT-ROD(p,n —1))
6 return g
)))) e))) aJ)d)))l
(a) (b) () (d)

W e e e

(e ® (€9 (h) 6

Rod-Cutting Problem....

« The Cut-Rod function is very inefficient!

— For n = 40, you would find that your program takes at least
several minutes, and most likely more than an hour

— The problem is that Cut-Rod calls itself recursively over
and over again with the same parameter values

CUT-ROD(p, n)
1 ifn-==

2 return 0
3 g=—-00

4 fori = 1ton
5 q = max(q, p[i] + CUT-ROD(p,n —i))
6 return g

DP for Rod-Cutting Problem

 The naive recursive solution is inefficient because it solves
the same subproblems repeatedly, thus DP solves each
subproblem only once

— If we need to refer to this subproblem’s solution again later, we
can just look it up, rather than recompute it

— Dynamic programming thus uses additional memory to save
computation time

« time-memory trade-off

— There are usually two equivalent ways to implement a
dynamic-programming approach
 top-down with memorization

« bottom-up method

Top-down with Memorization

« The pseudocode for the top-down Cut-Rod procedure with
memorization

— The procedure Memoized-Cut-Rod-Aux is just the memoized
version of Cut-Rod procedure
MEMOIZED-CUT-ROD-AUX (p,n,r) MEMOIZED-CUT-ROD (p, n)

1 ifr[n] >0 1 letr[0..n]be anew array

2 return r[n] 2 fori =0ton

3 ifn==0 3 rli] = —oo

4 q =20 4 return MEMOIZED-CUT-ROD-AUX(p,n,r)
S5 elseq = —o0

6 fori = 1ton

7 g = max(q, p[i] + MEMOIZED-CUT-ROD-AUX(p,n —1i,r))

8 r[n] =94 CuT-ROD(p, n)

9 return g it ==

1

2 return 0

3 g =—00

4 fori =1ton

5 q = max(q, p[i] + CUT-ROD(p,n —i))
6 return g

Bottom-up Strategy

« The bottom-up version is even simpler

BoTTOM-UP-CUT-ROD(p, 1)

1 letr[0..n]be anew array

2 r[0] = 0

3 forj =1ton

- q = —00

5 fori = 1toj

6 q = max(q, pli] +r[j —i])
7 rlj] = ¢

8 return r[n]

— For the bottom-up dynamic-programming approach, Bottom-
Up-Cut-Rod, solves the problem from “smaller” subproblems

 The procedure solves subproblems of sizes j = 0,1, --+, n, in that
order

« The bottom-up and top-down versions have the same
asymptotic running time 0(n?)

10

Reconstructing a Solution.

« Here is an extended version of Bottom-Up-Cut-Rod that
computes, for each rod size j , not only the maximum revenue
17, but also s;, the optimal size of the first piece to cut off

— Our dynamic-programming solutions do not return an actual
solution, i.e., a list of piece sizes

— It updates s[j] in line 8 to hold the optimal size i of the first
piece to cut off when solving a subproblem of size j

EXTENDED-BOTTOM-UP-CUT-ROD(p, 1)

1 letr[0..n]and s[0..n]be new arrays
2 r[0] =0

3 forj =1ton

4 q = —0o0

5 fori = 1toj

6 ifg < plil+r[j —i]

7 q = plil +rlj —i]

8 s[jl =i

9 rlj] =q

10 returnr and s

Reconstructing a Solution..

« The following procedure takes a price table p and a rod size n

PRINT-CUT-ROD-SOLUTION (p, n) EXTENDED-BOTTOM-UP-CUT-ROD (p, n)
1 (r,s) = EXTENDED-BOTTOM-UP-CUT-ROD(p,n). 1 letr[0..n]and s[0..n]be new arrays
2 whilen >0 2 r[0] =0
3 print s|[n] 3 forj =1ton
4 n =n—sln 4 g = —o0

5 fori = 1toj

6 ifg < plil+r[j—i]

7 q = pli]+rlj—1i]

8 s[jl =i

9 rljl =¢

10 return r and s

lengthi |1 2 3 4 5 6 7 8 9 10
pricep; |1 5 8 9 10 17 17 20 24 30_

— For example, the call Extended-Bottom-Up-Cut-Rod(p, 10)
would return the following arrays
i 0123 4 5 6 7 8 9 10

Fi110 1 5 8 10 13 17 18 22 25 30
sijlo 123 2 2 6 1 2 3 10

12

Thinking!

« What's the major difference between dynamic programing
and divide-and-conquer strategies?

13

Questions?

kychen@mail.ntust.edu.tw

14

	Rod-Cutting Problem
	Review
	Dynamic Programming
	Rod-Cutting Problem.
	Rod-Cutting Problem..
	Rod-Cutting Problem…
	Rod-Cutting Problem….
	DP for Rod-Cutting Problem
	Top-down with Memorization
	Bottom-up Strategy
	Reconstructing a Solution.
	Reconstructing a Solution..
	Thinking!
	Questions?

