

Rod-Cutting Problem

Kuan-Yu Chen (陳冠宇)

2019/04/16 @ TR-310-1, NTUST

Review

- We can categorize that
 - Comparison Sorts
 - The sorted order they determine is based only on comparisons between the input elements
 - Insertion Sort, Merge Sort, Quick Sort
 - Non-comparison Sorts
 - Counting Sort, Radix Sort, Bucket Sort

Algorithm	Worst-case running time	Average-case/expected running time	Best-case running time
Insertion sort	$\Theta(n^2)$	$\Theta(n^2)$	$O(n)$
Merge sort	$\Theta(n \lg n)$	$\Theta(n \lg n)$	$\Theta(n \log_2 n)$
Heapsort	$O(n \lg n)$	$O(n \lg n)$	$O(n)$
Quicksort	$\Theta(n^2)$	$\Theta(n \lg n)$ (expected)	$\Theta(n \log_2 n)$
Counting sort	$\Theta(k + n)$	$\Theta(k + n)$	$\Theta(k + n)$
Radix sort	$\Theta(d(n + k))$	$\Theta(d(n + k))$	$\Theta(d(k + n))$
Bucket sort	$\Theta(n^2)$	$\Theta(n)$ (average-case)	$\Theta(n)$

Dynamic Programming

- Dynamic programming, like the divide-and-conquer method, solves problems by combining the solutions to subproblems
- We typically apply dynamic programming to *optimization problems*
 - Such problems can have many possible solutions
 - Each solution has a value, and we wish to find a solution with the optimal (minimum or maximum) value

Rod-Cutting Problem.

- Given a rod of length n inches and a table of prices p_i for $i = 1, 2, \dots, n$, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces

length i	1	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30

- Consider the case when $n = 4$
 - We can cut up a rod of length n in 2^{n-1} different ways
 - Cutting a 4-inch rod into two 2-inch pieces produces revenue $p_2 + p_2 = 5 + 5 = 10$ is optimal

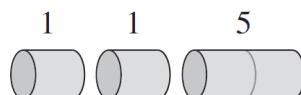
(a)

(b)

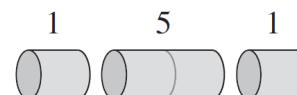
(c)



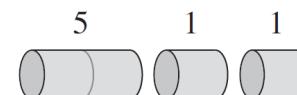
(d)



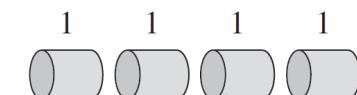
(e)



(f)



(g)



(h)

Rod-Cutting Problem..

- Given a rod of length n inches and a table of prices p_i for $i = 1, 2, \dots, n$, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces

length i	1	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30

- If an optimal solution cuts the rod into k pieces, $1 \leq k \leq n$, then an optimal decomposition is $\{i_1, i_2, \dots, i_k\}$

$$n = i_1 + i_2 + \dots + i_k$$

- The maximum revenue is

$$r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$$

- A general form is

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$

maximum revenue

$$\begin{aligned} r_1 &= 1 && \text{from solution } 1 = 1 \text{ (no cuts),} \\ r_2 &= 5 && \text{from solution } 2 = 2 \text{ (no cuts),} \\ r_3 &= 8 && \text{from solution } 3 = 3 \text{ (no cuts),} \\ r_4 &= 10 && \text{from solution } 4 = 2 + 2, \\ r_5 &= 13 && \text{from solution } 5 = 2 + 3, \\ r_6 &= 17 && \text{from solution } 6 = 6 \text{ (no cuts),} \\ r_7 &= 18 && \text{from solution } 7 = 1 + 6 \text{ or } 7 = 2 + 2 + 3, \\ r_8 &= 22 && \text{from solution } 8 = 2 + 6, \\ r_9 &= 25 && \text{from solution } 9 = 3 + 6, \\ r_{10} &= 30 && \text{from solution } 10 = 10 \text{ (no cuts).} \end{aligned}$$

Rod-Cutting Problem...

- For a given rod of length n inches, the general form of maximum revenue is

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$

- A simpler equation is

$$r_n = \max_{1 \leq i \leq n} (p_i + r_{n-i})$$

CUT-ROD(p, n)

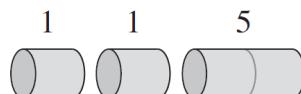
```
1  if  $n == 0$ 
2      return 0
3   $q = -\infty$ 
4  for  $i = 1$  to  $n$ 
5       $q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))$ 
6  return  $q$ 
```


(a)

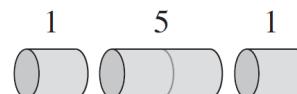
(b)

(c)

(d)



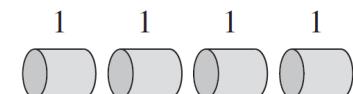
(e)



(f)



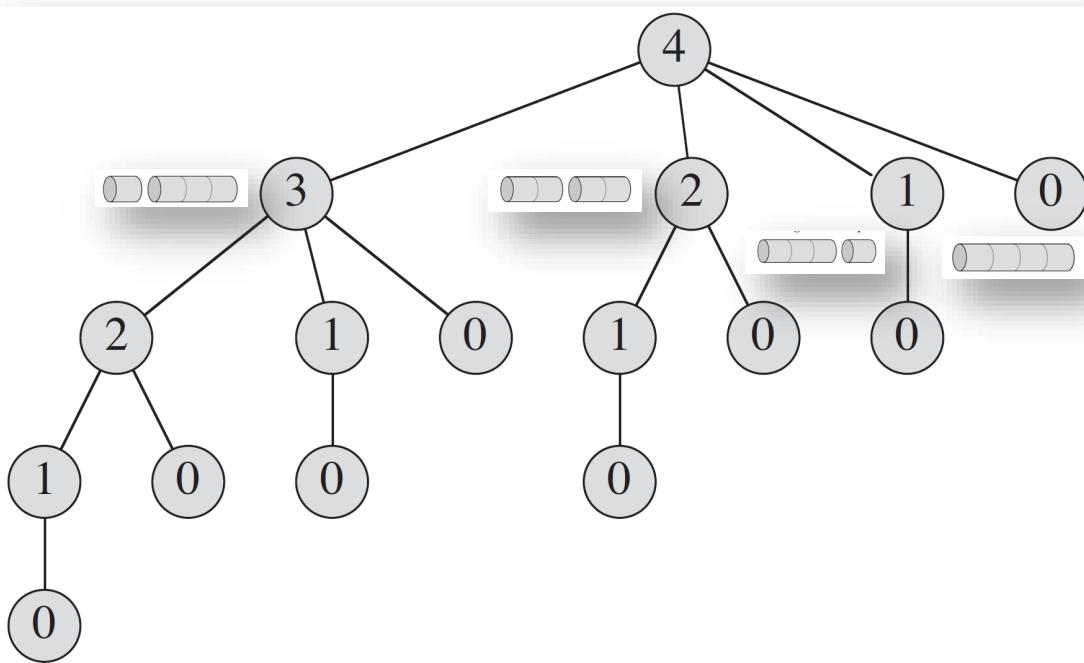
(g)



(h)

Rod-Cutting Problem....

- The Cut-Rod function is very inefficient!
 - For $n = 40$, you would find that your program takes at least several minutes, and most likely more than an hour
 - The problem is that Cut-Rod calls itself recursively over and over again with the same parameter values



CUT-ROD(p, n)

```
1  if  $n == 0$ 
2      return 0
3   $q = -\infty$ 
4  for  $i = 1$  to  $n$ 
5       $q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))$ 
6  return  $q$ 
```

DP for Rod-Cutting Problem

- The naive recursive solution is inefficient because it solves the same subproblems repeatedly, thus DP solves each subproblem only once
 - If we need to refer to this subproblem's solution again later, we can just look it up, rather than recompute it
 - Dynamic programming thus uses additional memory to save computation time
 - *time-memory trade-off*
 - There are usually two equivalent ways to implement a dynamic-programming approach
 - *top-down with memorization*
 - *bottom-up method*

Top-down with Memorization

- The pseudocode for the top-down Cut-Rod procedure with memorization
 - The procedure Memoized-Cut-Rod-Aux is just the memoized version of Cut-Rod procedure

MEMOIZED-CUT-ROD-AUX(p, n, r)

```
1  if  $r[n] \geq 0$ 
2    return  $r[n]$ 
3  if  $n == 0$ 
4     $q = 0$ 
5  else  $q = -\infty$ 
6    for  $i = 1$  to  $n$ 
7       $q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))$ 
8     $r[n] = q$ 
9  return  $q$ 
```

MEMOIZED-CUT-ROD(p, n)

```
1  let  $r[0..n]$  be a new array
2  for  $i = 0$  to  $n$ 
3     $r[i] = -\infty$ 
4  return MEMOIZED-CUT-ROD-AUX( $p, n, r$ )
```

CUT-ROD(p, n)

```
1  if  $n == 0$ 
2    return 0
3   $q = -\infty$ 
4  for  $i = 1$  to  $n$ 
5     $q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))$ 
6  return  $q$ 
```

Bottom-up Strategy

- The bottom-up version is even simpler

```
BOTTOM-UP-CUT-ROD( $p, n$ )
```

```
1  let  $r[0..n]$  be a new array
2   $r[0] = 0$ 
3  for  $j = 1$  to  $n$ 
4       $q = -\infty$ 
5      for  $i = 1$  to  $j$ 
6           $q = \max(q, p[i] + r[j - i])$ 
7       $r[j] = q$ 
8  return  $r[n]$ 
```

- For the bottom-up dynamic-programming approach, Bottom-Up-Cut-Rod, solves the problem from “smaller” subproblems
 - The procedure solves subproblems of sizes $j = 0, 1, \dots, n$, in that order
- The bottom-up and top-down versions have the same asymptotic running time $\Theta(n^2)$

Reconstructing a Solution.

- Here is an extended version of Bottom-Up-Cut-Rod that computes, for each rod size j , not only the maximum revenue r_j , but also s_j , the optimal size of the first piece to cut off
 - Our dynamic-programming solutions do not return an actual solution, i.e., a list of piece sizes
 - It updates $s[j]$ in line 8 to hold the optimal size i of the first piece to cut off when solving a subproblem of size j

EXTENDED-BOTTOM-UP-CUT-ROD(p, n)

```
1  let  $r[0..n]$  and  $s[0..n]$  be new arrays
2   $r[0] = 0$ 
3  for  $j = 1$  to  $n$ 
4       $q = -\infty$ 
5      for  $i = 1$  to  $j$ 
6          if  $q < p[i] + r[j - i]$ 
7               $q = p[i] + r[j - i]$ 
8               $s[j] = i$ 
9       $r[j] = q$ 
10 return  $r$  and  $s$ 
```

Reconstructing a Solution..

- The following procedure takes a price table p and a rod size n

PRINT-CUT-ROD-SOLUTION(p, n)

```

1  ( $r, s$ ) = EXTENDED-BOTTOM-UP-CUT-ROD( $p, n$ )
2  while  $n > 0$ 
3      print  $s[n]$ 
4       $n = n - s[n]$ 

```

EXTENDED-BOTTOM-UP-CUT-ROD(p, n)

```

1  let  $r[0..n]$  and  $s[0..n]$  be new arrays
2   $r[0] = 0$ 
3  for  $j = 1$  to  $n$ 
4       $q = -\infty$ 
5      for  $i = 1$  to  $j$ 
6          if  $q < p[i] + r[j-i]$ 
7               $q = p[i] + r[j-i]$ 
8               $s[j] = i$ 
9       $r[j] = q$ 
10 return  $r$  and  $s$ 

```

length i	1	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30

- For example, the call Extended-Bottom-Up-Cut-Rod($p, 10$) would return the following arrays

i	0	1	2	3	4	5	6	7	8	9	10
$r[i]$	0	1	5	8	10	13	17	18	22	25	30
$s[i]$	0	1	2	3	2	2	6	1	2	3	10

Thinking!

- What's the major difference between dynamic programming and divide-and-conquer strategies?

Questions?

kychen@mail.ntust.edu.tw